Enrollment No.

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Rajkot

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION APRIL - 2018

M.Sc. Mathematics

16PMTCC18 - NUMBER THEORY -II

Duration of Exam – 3 hrs	Semester – IV	Max. Marks – 70

<u>Part A</u> (5x2= 10 marks) Answer <u>ALL</u> questions

- 1. Define: Primitive P-triplet.
- 2. If a|b is farey fraction then show that (a, b) = 1.
- 3. Expand $\frac{17}{3}$ in terms of simple continued fraction.
- 4. Convert < 1,2,1,2 ... >.
- 5. Draw Ferrers Graph of n = 5.

<u>Part B</u> (5x5 = 25 marks) Answer <u>ALL</u> questions

6a. Show that the Diophantine equation $ax + by = c (a^2 + b^2 \neq 0)$ has a solution if and only if d/c where d = (a, b).

OR

6b. Find General Solution of 63x + 7 = 23y.

7a. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive farey fraction in the nth row then show that |ad - bc| = 1.

OR

7b. If θ is an irrational number then show that there are infinitely many rational number $\frac{a}{b}$ such that $\left|\theta - \frac{a}{b}\right| < \frac{1}{b^2}$. (Farey Fraction)

8a. Show that the value of a finite simple continued fraction is a rational number.

OR

- 8b. Convert < 2,3,6,1 > into rational number and expand $\frac{3}{17}$.
- 9a. Find any three positive solution of $x^2 3y^2 = 1$.

OR

9b. Prove that there are infinitely many positive integers n such that $1 + 2 + 3 + \dots + n$ have perfect square.

10a. Define Partition and write all partition of n = 6.

OR

10b. Show that $\prod_{j=1}^{\infty} 1 + x^j = \prod_{n=1}^{\infty} (1 + x^{2n-1})^{-1}$.

<u>Part C</u> (5x7 = 35 marks) Answer <u>ALL</u> questions

- 11a. Define Perfect square and show that if u and v are relatively prime positive integer whose product uv is perfect square then show that u and v are perfect square.
- OR
- 11b. The primitive positive solution of Pythagorean triplet $x^2 + y^2 = z^2$ with y is even then show that there are positive integer r and s such that $r > s \ge 1$, one of r and s have opposite parity, (r, s) = 1, $z = r^2 + s^2$, y = 2rs and $x = r^2 - s^2$.
- 12a. If θ is an irrational number then there are infinitely many rational $\frac{a}{b} \ge \left| \theta \frac{a}{b} \right| < \frac{1}{b^2}$.

OR

- 12b. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive Farey fraction in the any row then show that $\frac{a+c}{b+d}$ is the unique rational number between $\frac{a}{b}$ and $\frac{c}{d}$ such that its denominator is the smallest among all rational between $\frac{a}{b}$ and $\frac{c}{d}$.
- 13a. If θ is an irrational number then show that there are infinitely many rational number $\frac{a}{b}$ such that $\left|\theta \frac{a}{b}\right| < \frac{1}{\sqrt{5}b^2}$ using continued fraction.

OR

- 13b. Show that any rational number can be expressed as a value of some simple finite continued fraction.
- 14a. Show that an irrational no θ is quadratic irrational if and only if its simple continued fraction is periodic.

OR

- 14b. Let θ be a quadratic irrational then the continued fraction expansion of θ *purily* periodic if and only if 1) $\theta > 1$ and 2) $-1 < \theta' < 0$.
- 15a. Draw the Farrers Graph for n = 8.

OR

15b. Define Partition and find write all partition of n = 7.